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Magnetoabsorption spectra of bilayer graphene ribbons with Bernal stacking are studied by the Peierls-
coupling tight-binding method. When the magnetic confinement prevails over the quantum confinement, low-
energy spectra chiefly exhibit many Landau peaks, which are strongly modified by the inter-ribbon interactions
and the magnetic-field magnitude �B�. The spectra show denser Landau peaks in bilayer graphene ribbon than
in a monolayer ribbon with the same ribbon width. The absorption frequencies of Landau peaks of a wide
monolayer ribbon show the �B dependence, while those of a bilayer ribbon exhibit a varying B-field depen-
dence. In the spectra region ��100 meV, the absorption frequencies of Landau peaks are linearly dependent
on the magnetic-field magnitude. At ��100 meV, they evolve from the B dependence to the �B dependence
with the increase in the field strength. The absorption frequencies of Landau peaks exhibit �B dependence at
B�20 T. The relationship between the magneto-optical properties and electronic structures �the state energies
and wave functions� are explored. The Landau wave functions are illustrated and used to identify the optical
selection rule.
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I. INTRODUCTION

Recently, the observation of two-dimensional �2D�
graphene and few-layer graphene1–4 has triggered many ex-
perimental and theoretical studies. The nanoscale graphene is
expected to be a potential candidate for the next-generation
electronics simply because of its ballistic transport at room
temperature and mechanical stability. Progress in academic
research would help explore possible applications and design
options. Experimental and theoretical studies show that
graphene, a planar hexagonal lattice of carbon atom, exhibits
many interesting properties, such as the two linear bands
intersecting at the Fermi energy,5,6 the novel quantum Hall
effect,7–9 and the electric-field-induced carrier transition.1

Few-layer graphenes are the stack of graphene layers. Their
intriguing electronic properties emerge through the change in
layer number, the alternation of stack ordering, and the ap-
plication of external field.10–12 Among them, the bilayer
graphene with Bernal stacking �the AB-stacked bilayer
graphene� has aroused the most studies. Because of the in-
terlayer interactions and geometrical structure, the Bernal bi-
layer graphene exhibits four branches of the energy curves.
Each curve is made of parabolic bands and sublinear
bands.10–13 Bilayer graphene is a two-dimensional semimetal
with the tiny overlap between the highest occupied valence
band and the lowest unoccupied conduction band. By open-
ing a tunable energy gap, the application of a perpendicular
electric field can induce the semimetal-semiconductor
transition.11–15 Such interesting properties might offer an al-
ternative design option for the electronic devices.

The difference in essential properties between the mono-
layer and bilayer graphenes is also revealed in transport. Ex-
perimentally, a monolayer graphene shows the Berry’s phase
� and the half-integer quantum Hall effect.8 On the other
hand, the integer quantum Hall effect, accompanied by Ber-

ry’s phase of 2�, arises in bilayer graphene.7 The above-
mentioned data might be attributed to the difference in mag-
netic bands. In the absence of the magnetic field, charge
carriers in a monolayer graphene are characterized by a lin-
ear dispersion, while those in bilayer graphene have a para-
bolic energy spectrum. The low-energy Landau levels �LLs�
of a monolayer graphene subjected to a perpendicular mag-
netic field are well described by the effective-mass model.
They follow the simple relation �E���B�n�, where B is the
magnetic-field strength and n is the subband index. The
effective-mass model is extended to conveniently study the
magnetoelectronic properties of a bilayer Bernal graphene in
the presence of a perpendicular magnetic field.16–18 Bilayer
graphene shows more complicated LLs, whose energies are
dramatically modified by the interlayer interactions. This
model predicts that the energies of LLs, which are very close
to EF, are approximately proportional to �n�n−1�B when
some interlayer interactions are excluded for the calculation
simplicity. However, the effective-mass model is only suit-
able for the low-energy LLs, meaning that this model cannot
offer the physical pictures in the overall energy region.

Peierls-coupling tight-binding method is an alternative
option used to study the full magnetic band of graphitic
systems.19–24 It has been utilized to explore the magnetoab-
sorption spectra of a monolayer graphene.21 By diagonaliz-
ing a 2q�2q complex Hamiltonian matrix, where q is the
inverse of the magnetic flux �, the full magnetic band and
the related wave functions are obtained to calculate the ab-
sorption spectra. This method will be met with a serious
obstacle when we consider the magnetoelectronic properties
at a low magnetic field. For example, one needs to diagonal-
ize a 160 000�160 000 complex matrix at B=1 T. An effi-
cient numerical method is proposed to overcome this
problem.25 The arrangement of matrix elements in the band
storage allows us to easily diagonalize such a high rank ma-
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trix. This method is successfully used to study the magneto-
electronic properties, such as state energies and Landau wave
functions, of the AB-stacked bilayer graphene. However, it is
not suitable to calculate the magneto-optical properties of the
AB-stacked bilayer graphene due to the labor numerical task
in calculating the velocity matrix element.21 Thus, another
way to efficiently calculate the magneto-optical properties of
bilayer graphene is inspired.

Peierls-coupling tight-binding method has been employed
to study the magnetoelectronic properties and absorption
spectra of monolayer graphene zigzag ribbons with the rib-
bon width changing from the nanometer to the mesoscopic
scale.26 The magnetic bands and the related wave functions
of a ribbon are dominated by the magnetic confinement and
quantum confinement.26–28 When the ribbon width is wider
than the spatial extent of Landau wave functions, the Landau
states exist.26 As a result, the magnetoabsorption spectra ex-
hibit sharp Landau peaks. The spectral frequencies of Lan-
dau peaks are chiefly determined by the field strength. The
peak height runs higher with the increase in the ribbon width.
The results show that at a low magnetic field, the magneto-
electronic properties of a ribbon with sufficient width are
deduced to be the same as those of a 2D graphene.

We now use the tight-binding method to study the mag-
netoabsorption spectra of bilayer graphene ribbons with Ber-
nal stacking. There are several advantages to this method: �i�
Hamiltonian representation of the zigzag ribbon is a real
Hermitian matrix in the band storage. The state energies and
the wave functions are efficiently obtained by the diagonal-
ization of such a band-storage matrix. �ii� The Peierls-
coupling tight-binding method is able to provide the full-
band electronic structure.26 �iii� This method is easy to
include the interlayer interactions and is applied to
multilayer systems, e.g., bilayer, trilayer, and four-layer
graphene ribbons.

This paper is organized as follows: Section II discusses
the Hamiltonian matrix elements of a bilayer graphene rib-
bon in the presence of a perpendicular magnetic field. Then,
magnetoelectronic and optical properties are explored in Sec.
III. Finally, conclusion remarks are drawn in Sec. IV. Most
importantly, the studies are helpful to understanding the
magnetic-optical properties of a bilayer Bernal graphene.

II. THEORY

An Ny AB-stacked bilayer zigzag graphene ribbon, as il-
lustrated in Fig. 1, is the pile of two identical monolayer
zigzag ribbons with Bernal stacking. Each ribbon has Ny
zigzag lines along the y axis. Hydrogen atoms are attached to
carbon atoms located at cusps of the outmost zigzag lines.
�For details see Ref. 26.� Along the z axis, atoms Am

2 lie
directly on top of atoms Am

1 while the projections of atoms
Bm

2 are in the center of the hexagonal rings on the lower
ribbon plane. Am

1 and Bm
1 �Am

2 and Bm
2 � denote atoms A and B

in the mth zigzag line on the lower �upper� ribbon plane. The
inter-ribbon distance is Ic=3.35 Å and C-C bond length is
b=1.42 Å.29 The lattice periodicity along the x axis is Ix
=�3b and the first Brillouin zone is defined by −� / Ix�kx
�� / Ix. An AB-stacked bilayer zigzag ribbon has 4Ny atoms

in a 2D primitive cell. Each atom contributes one 2pz orbital
to the �-electronic structure. That is, only the 2pz orbitals of
the carbon atoms are taken into consideration.26,30,31

In the presence of a perpendicular magnetic field B
= �0,0 ,B�, through the Peierls substitution, Hamiltonian of
the AB-stacked bilayer graphene ribbon is H=�i�p,i
+�i,j�	i,je

i2�
i,jci
+cj +H.c.�, where the site energy �p is set to

zero. 
i,j is Peierls phase shift induced by the magnetic field.
ci

+�cj� is the creation �annihilation� operator at the ith �jth�
site. The definition of the tight-binding parameters 	i,j is
shown in Fig. 1. The different chemical environment be-
tween atom A and atom B is reflected in the site energy 	6.
The values of atom-atom interactions are as follows:29 	0
=2.598 eV, 	1=0.364 eV, 	3=0.319 eV, 	4=0.177 eV,
and 	6=−0.026 eV. The vector potential with the Landau
gauge A= �−By ,0 ,0� is picked out. The benefit of such a
choice is to preserve the translation invariance along the x
axis. Thus, there are 4Ny atoms in a primitive cell found. The
tight-binding Bloch function could be expressed as

���kx,y�� = �
m=1

Ny

aAm
1 �Am

1 � + bBm
1 �Bm

1 � + aAm
2 �Am

2 � + bBm
2 �Bm

2 � ,

�1�

where �Am
1 �, �Bm

1 �, �Am
2 �, and �Bm

2 � are the linear superposition
of the 2pz orbitals from the periodic Am

1 , Bm
1 , Am

2 , and Bm
2

carbon atoms. aAm
1 , bBm

1 , aAm
2 , and bBm

2 are the site amplitudes.
The 4Ny �4Ny Hamiltonian representation is a band-storage
matrix with the nonzero elements hm,m, hm,m+1, and hm+1,m,
where hm,m, hm,m+1, and hm+1,m are 4�4 block matrices. Ma-
trix elements of the upper triangular part of the Hermitian
matrix hm,m, spanned by four Bloch functions �Am

1 �, �Bm
1 �,

�Am
2 � and �Bm

2 �, are expressed as follows:

��

m = 1
2
3
4
5
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FIG. 1. �Color online� The geometrical structure and the atom-
atom interactions 	i of bilayer zigzag ribbon. 	0 is the in-plane
hopping. 	1 is the inter-ribbon interaction between two atoms Am

1

and Am
2 . The inter-ribbon hopping between atoms Bm

1 and Bm
2 is 	3.

	4 represents the interaction between atoms Am
1 and Bm

2 �Am
2 and

Bm
1 �.
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hm,m�1,1� = 	6,

hm,m�1,2� = 2	0 cos�kxIx − ��m − 	N
��� ,

hm,m�1,3� = 	1,

hm,m�1,4� = 2	4 cos�kxIx − �m − 	N
 −
1

3
��� ,

hm,m�2,2� = 0,
�2�

hm,m�2,3� = 2	4 cos�kxIx − ��m − 	N
��� ,

hm,m�2,4� = 	3,

hm,m�3,3� = 	6,

hm,m�3,4� = 2	0 cos�kxIx − �m − 	N
 −
1

3
��� ,

hm,m�4,4� = 0,

where the term 	N
= �Ny +1� /2 is used to locate the origin of
coordinate in the center of the lower ribbon plane. Magnetic
flux passing a hexagonal ring induces the Peierls phase shift
2��. The term �� /3 in Eq. �2� results from the difference
between the centers of the two ribbons. The off-diagonal
block matrices hm,m+1 and hm+1,m satisfy the relation hm,m+1
=hm+1,m. The nonzero matrix elements of matrix hm,m+1 are

hm,m+1�1,4� = 	4,

hm,m+1�2,1� = 	0,

hm,m+1�2,3� = 	4, �3�

hm,m+1�2,4� = 2	3 cos�kxIx − �m − 	N
 +
1

3
��� ,

hm,m+1�3,4� = 	0.

By diagonalizing the Hamiltonian matrix, we obtained eigen-
values and eigenvectors. Eigenvalues are the energy disper-
sions Ec,v�kxIx� in unit of 	0, where c �v� represents the
unoccupied �occupied� states. The eigenvector
�¯ ,aAm

1
c,v ,bBm

1
c,v ,aAm

2
c,v ,bBm

2
c,v ,¯� is the envelope function ��c,v�y��

along the y direction.

III. MAGNETOELECTRONIC AND OPTICAL
PROPERTIES

The low-energy magnetic bands of the Ny =3000 mono-
layer zigzag ribbon at B=20 T, as shown in Fig. 2�a�, ex-
hibits both the Landau levels and the additional
spectrum.32,33 Still, we focus only on the Landau levels here.
Ec are symmetric to Ev about EF=0. The state energy of

Landau subband indexed by n follows the relation �E�
��n�B.26 The highest occupied Landau states and the lowest
unoccupied Landau states are degenerate at EF. As a result of
the interlayer interactions, the low-energy magnetic bands of
the Ny =3000 bilayer graphene ribbon exhibits more Landau
levels at B=20 T 	Fig. 2�b�
. The unoccupied states �the
occupied states� away from EF are characterized by Eñ

c�Eñ�
v �

with the subband index ñ=0,1 ,2 ,3 , ¯ �ñ�=0,−1,−2,
−3,¯�. Eñ

c is asymmetric to Eñ�
v about EF=0. The Landau-

level degeneracy at E=0 is lifted and there exists an energy
gap Eg=Eñ=0

c −Eñ�=0
v . In short, the inter-ribbon interactions

generate new Landau levels, change the state energies of
Landau levels, lift the degeneracy, alter the energy spacings,
destroy the symmetry between Ec and Ev, and induce an
energy gap Eg. Notably, the Landau-level energies are inde-
pendent of the ribbon width, Ny =800 	the heavy dots in Fig.
2�d�
, for example. That is, they are the same as those of a
bilayer graphene.

The magnetoelectronic properties of graphene ribbons are
chiefly dominated by the competition between the ribbon
width and the spatial distribution of Landau wave function.27

Nemec et al.24 show that as the ribbon width is narrower than
the critical width wcritical=�8�lB, where lB=� �

eB is the mag-
netic length, the Landau levels of a graphene ribbon disap-

FIG. 2. �Color online� �a� and �b�, respectively, show the low-
energy magnetic bands of the Ny =3000 monolayer and bilayer rib-
bons at B=20 T. �c� Landau plot of the Ny =3000 bilayer ribbon.
�d� The relation between the low-energy Landau levels of the Ny

=3000 bilayer ribbon and �B. The inset of �d� exhibits the low-
energy dispersions at B=0.
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pear and the magnetic bands will differ from the Landau
levels �flatbands� of an infinite graphene system.17 The re-
sults of the study are consistent with those of Nemec. At B
=20 T, the n=1 Landau level of a monolayer or bilayer
graphene ribbon emerges as the ribbon width w is wider than
a critical width wcritical�4.4lB �or Ny �124�.26 Within this
critical width, the Landau wave functions touch the ribbon
edges and the Landau level does not exist. As a result, the
Hall-edge states emerge, which are clearly distinguished
from the Landau levels of an infinite graphene system.

Compared with the simple square-root-of-B dependence
of a monolayer ribbon,26 the bilayer ribbon shows a more
complicated Landau plot, the Landau-level energies vs the
field strength. The calculation results show that Landau-level
energies Eñ

c�Eñ�
v � with ñ�2��ñ���2� grow linearly at B

�25 T 	Fig. 2�c�
. Thus, the increase in magnetic-field
strength enhances the energy gap Eg=Eñ=0

c −Eñ=0
v . The gap is

closed at B=0 because the bilayer system is a semimetal
with the tiny overlap of the highest valence and the lowest
conduction bands 	the inset of Fig. 2�d�
. The magnetic field
cannot induce a band gap, i.e., Eg=0, in a monolayer
graphene. Such a result means that with the close of chemi-
cal difference �	6�, and interlayer interactions �	1 ,	3 ,	4�, Eg
of a bilayer ribbon is equal to zero for any magnetic field.
The nonzero energy gap of this bilayer system is caused by
the cooperation of the magnetic field, chemical difference,
and interlayer interactions. On the other hand, Eñ

c�Eñ�
v � with

ñ�2��ñ���2� exhibit different behavior. First, they obey the
relation EB at B�5 T 	Fig. 2�c�
, characteristic of the
massive electrons �holes�, yet such a characteristic disap-
pears with the increase in the field strength. At B�5 T, the
Landau plots deviate from the linear-in-B dependence. Fig-
ure 2�d� exhibits the Landau-level energies vs �B. In the
presence of a strong field, the tangent lines of the curves pass
through the same point �. Landau-level energies follow the
simple relation Eñ

c�Eñ�
v ��B. The electrons feature the mass-

less carriers.
The dependence of the Landau-level energies on the sub-

band index ñ��ñ��� and the field strength is critically deter-
mined by the Landau-level energies. In the energy region
�E��0.02	0�50 meV, the Landau plots indexed by ñ
�2��ñ���2� exhibit the linear-in-B dependence at B�5 T.
Then, they evolved from a pure linear B dependence to a
square-root B dependence with the increase in the field
strength within the energy region 0.02	0� �E��0.04	0, and
finally they exhibit the linear-in-�B dependence at B
�16 T. The result predicted by the Peierls-coupling tight-
binding method is in agreement with that of the experimental
measurement.34 Moreover, as shown in the insets of Fig.
2�c�, the low lying Landau levels within the energy region
�E��0.02	0�50 meV follow the relation �E� �ñ�B, which
is consistent with the predicted result of the effective-mass
model.16

The characteristics of Landau wave functions �ñ�kx ,y�
	Eq. �1�
 are revealed in the envelope function �ñ�y�. Lan-
dau wave functions at kx=� /3 of the Ny =3000 bilayer rib-
bon subjected to several different magnetic-field magnitudes
are investigated. The main feature of �ñ�y� is independent of
the magnetic-field magnitude. Thus, Landau wave functions

�ñ�kx ,y� at B=20 T are chosen as a model for further study.
�ñ�y� with ñ�3 ��ñ���3� are shown in Fig. 3. The interest-
ing characteristics of each �n�y� emerged through the de-
composition of �n�y� into eight subenvelope functions.
�n�y� is rewritten as

�ñ
c,v = �c,v�Ao

1� + �c,v�Bo
1� + �c,v�Ae

1� + �c,v�Be
1� + �c,v�Ao

2�

+ �c,v�Bo
2� + �c,v�Ae

2� + �c,v�Be
2� , �4�

where Ao
1, Ae

1, Bo
1, and Be

1 �Ao
2, Ae

2, Bo
2, and Be

2� represent A or
B atoms located at the odd or even zigzag lines at the lower
�upper� ribbon plane. For example, the subenvelope function
��Ao

1� is �aA1
1 ,aA3

1 , ¯ ,aAm
1 ,¯�, where m is an odd number.

Only four subenvelope functions, �c,v�Ao
1�, �c,v�Bo

1�, �c,v�Ao
2�,

and �c,v�Bo
2�, are displayed in Fig. 3 because �c,v�Ao

1�
=−�c,v�Ae

1�, �c,v�Bo
1�=−�c,v�Be

1�, �c,v�Ao
2�=−�c,v�Ae

2�, and
�c,v�Bo

2�=−�c,v�Be
2�. As illustrated, the Landau wave func-

tions related to the double degenerate Eñ=0
c state are different.

The subenvelope function �c�Bo
1� 	�c�Ao

2�
 of �ñ=0
c is

strongly confined at one of the zigzag edges of the lower
�upper� ribbon. It is a specially localized state located nearby
at the ribbon edges. Except the specially localized state, the

FIG. 3. The envelope functions at kxIx=� /3 and B=20 T re-
lated to the unoccupied �occupied� Landau levels indexed by ñ=0,
1, 2, and 3 �ñ=0, −1, −2, and −3�. �a�, �b�, �c�, and �d�, respectively,
illustrate the subenvelope functions ��Ao

1�, ��Bo
1�, ��Ao

2�, and ��Ao
2�.

Ao
1 or Bo

1 �Ao
2 or Bo

2� represent A or B atoms located at the odd zigzag
lines at the lower �upper� ribbon plane.
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shape of the envelope function �ñ
c,v is very sensitive to the

Landau-level energy or the subband index. �ñ=0
c ��ñ�=0

v �, the
envelope function of the lowest unoccupied LL �the envelope
function of the highest unoccupied LL�, is chiefly dominated
by the subenvelope function �c�Bo

2� 	�v�Bo
2�
. The site ampli-

tude of B2 atoms at the upper ribbon is much larger than
others. Away from EF, the LL wave functions are determined
by both ��Bo

1� and ��Bo
2�, the site amplitudes of the B atoms

in the lower and upper ribbons. ��Bo
1� and ��Bo

2� have almost
the same contribution to the Landau wave function.

The subenvelope functions belong to the localized states,
and they also show the oscillating behavior in the confined
region. The site amplitude changes signs at the nodes. The
number of nodes characterizes the spatial symmetry of the
Landau wave function. That is, each subenvelope function of
Landau wave function can be specifically described by the
number of nodes, which is closely related to the Landau-
level energy. Thus, the subband index is used as a quantum
number to label the Landau wave function. Envelope func-
tion �ñ

c indexed by �ñ��2 is denoted as follows:

�ñ
c = �ñ�Ao

1� − �ñ�Ae
1� + �ñ−1�Bo

1� − �ñ−1�Be
1� + �ñ�Ao

2�

− �ñ�Ae
2� + �ñ+1�Bo

2� − �ñ+1�Be
2� , �5�

where the subscript of the subenvelope function � labels the
number of nodes. Each subenvelope function has its own
spatial symmetry. Both �ñ�Ao

1� and �ñ�Ae
2� have ñ nodes. On

the other hand, �ñ−1�Bo
1�	�ñ+1�Be

2�
 has ñ−1�ñ+1� nodes.
The envelope function �ñ=3

c , for instance, reads

�ñ=3 = �3�Ao
1� − �3�Ae

1� + �2�Bo
1� − �2�Be

1� + �3�Ao
2� − �3�Ae

2�

+ �4�Bo
2� − �4�Be

2� . �6�

The envelope functions �ñ�=−3
v and �ñ=3

c have similar suben-
velope functions. Due to the orthogonality of wave function,
�ñ�=−3

v and �ñ=3
c are different from each other in the sign of

some of the subenvelope functions. Notably, the highest oc-
cupied and lowest unoccupied LLs have their own spatial
symmetry or oscillating behavior. The number of nodes cor-
responding to the subenvelope functions �c�Ao

1�, �c�Bo
1�,

��Ao
2�, and ��Bo

2� of the highest occupied LL is �0, 2, 0, 1�.
As for the lowest unoccupied LL, it is �2, 1, 2, 0�. The spatial
symmetry or the oscillating properties of Landau wave func-
tions dominates the feature of optical absorption spectra.

The optical absorption function is given by35–37

A���  �
ñ,ñ�
�

1stBZ

dkx

2�
Im� f	Eñ

c�kx�
 − f	Eñ�
v �kx�


Eñ
c�kx� − Eñ�

v �kx� − � − i�
�

� ���ñ
c�kx,y�� Ê · P�

me
��ñ�

v �kx,y���2

, �7�

where ñ and ñ� are subband indices and f	Eñ�kx�
 is the
Fermi-Dirac distribution function. Only the inter-�-band ex-
citations happen at T=0. With an electric polarization Ex � x̂,
the electromagnetic field excites electrons from the occupied
� bands �ñ��0� to the unoccupied �� bands �ñ�0�. The

optical selection rule is �kx=0 because of the almost zero
momentum of photon.

The magnetoabsorption spectra of bilayer graphene rib-
bons with different ribbon widths at B=20 T only exhibit
several delta-function-like symmetric peaks 	Fig. 4�a�
,
which come from the transitions between the Landau levels
	Fig. 2�b�
. Notably, the frequencies of Landau peaks remain
unchanged though the ribbon width grows. They are inde-
pendent of the ribbon width and deduced to be the same as
those of the bilayer graphene. A���’s exhibit stronger peaks
for large Ny’s, since there are more Landau states and exci-
tation channels. The energy spacings between two neighbor-
ing absorption peaks are different. Due to the interlayer in-
teractions, A��� of the Ny =800 bilayer graphene ribbon
contrast to that of the Ny =800 monolayer ribbon in the num-
ber, the frequencies, and the energy spacings of the Landau
peaks 	Fig. 2�a�
.

The optical transition channel of each absorption peak
could be clearly identified. For instance, the transition chan-
nels corresponding to the first seven sharp peaks, denoted as
�0

+ , . . . ,�3
+, and �4

− in Fig. 4�a�, are, respectively, indicated in
Fig. 4�b�. Peaks �0

+, �1
+, �2

+, and �3
+ originate in the transi-

tions from the ñ�=0, −1, −2 and −3 subbands to ñ=1, 2, 3
and 4 subbands. As for the Landau peaks �2

−, �3
−, and �4

−,
they come from the optical excitations between the ñ�=−2,
−3, −4 subbands and ñ=1,2 ,3 subbands. The notation �ñ

�

denotes the optical transition between ñ�=−ñ subband to
ñ�1. That is to say, the selection rule is ��ñ�= �1. The
optical transition channel and the selection rule are totally
determined by the velocity matrix element.

FIG. 4. �a� Magnetoabsorption spectra of bilayer ribbons with
various widths at B=20 T. Absorption spectrum of the Ny =800
monolayer ribbon is also shown. �b� The effective transition chan-
nels for the Ny =3000 bilayer ribbon at B=20 T.
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An analytic study is helpful for clarifying the origin of the
selection rule ��ñ�= �1, which is obtained by the numerical
calculation. Based on the gradient approximation, the veloc-

ity matrix element ��ñ
c�kx ,y�� Ê·P�

me
��ñ�

v �kx ,y�� is approximated
by ��ñ

c�kx ,y�� �H
�kx

��ñ�
v �kx ,y��. Inserting the tight-binding

Bloch functions 	Eq. �1�
 and Hamiltonian matrix 	Eqs. �2�

and �3�
 into the velocity matrix element, we obtain
��ñ

c�kx ,y�� �H
�kx

��ñ�
v �kx ,y��=�¯aAm

1
c� �Am

1 � �H
�kx

�Bm
1 �bBm

1
v
¯. Obvi-

ously, only the electron jumping from the site A�B� to the
nearest neighboring site B�A� can contribute to the velocity
matrix element. The following list illustrates the nonzero ma-
trix elements of the representation of operator �H

�kx
:

�Am
1 � �H

�kx
�Bm

1� = − 2	0Ix sin�kxIx − ��m − 	N
��� ,

�Am
1 � �H

�kx
�Bm

2� = − 2	4Ix sin�kxIx − �m − 	N
 −
1

3
��� ,

�Bm
1 � �H

�kx
�Am

1� = − 2	0Ix sin�kxIx − ��m − 	N
��� ,

�Bm
1 � �H

�kx
�Am

2� = − 2	4Ix sin�kxIx − ��m − 	N
��� ,

�Am
2 � �H

�kx
�Bm

2� = − 2	0Ix sin�kxIx − �m − 	N
 −
1

3
��� , �8�

�Am
2 � �H

�kx
�Bm

1� = − 2	4Ix sin�kxIx − ��m − 	N
��� ,

�Bm
2 � �H

�kx
�Am

2� = − 2	0Ix sin�kxIx − �m − 	N
 −
1

3
��� ,

�Bm
2 � �H

�kx
�Am

1� = − 2	4Ix sin�kxIx − �m − 	N
 −
1

3
��� ,

�Bm
1 � �H

�kx
�Bm+1

2 � = − 2	3Ix sin�kxIx − �m − 	N
 +
1

3
��� .

Because of the strong localization of the Landau wave func-
tions, the spatial extent of Landau wave function is so nar-
row that the phase ��m− 	N
�� is negligible, i.e., sin�kxIx
−��m− 	N
����sin�kxIx�. Accordingly, the magnitude of ve-
locity matrix element is written as

���ñ
c�kx,y�� �H

�kx
��ñ�

v �kx,y���
= 2Ix sin�kxIx��	0��ñ

c�y���ñ�
v �y��intraribbon

+ �	4 + 	3���ñ
c�y���ñ�

v �y��inter-ribbon� , �9�

where ��ñ
c�y� ��ñ

v�y�� is the projection of the envelope func-
tion of the initial state on that of the final state. The subscript

“intraribbon” �“inter-ribbon”� denotes the initial and final
states located at the same �different� ribbons. By expanding
the envelope function in its associated subenvelope
functions, the projections ��ñ

c�y� ��ñ
v�y��intraribbon and

��ñ
c�y� ��ñ

v�y��inter-ribbon are, respectively, expressed as

��ñ
c�y���ñ�

v �y��intraribbon = ��ñ
c�A1���ñ�−1

v �B1��

+ ��ñ−1
c �B1���ñ�

v �A1��

+ ��ñ
c�A2���ñ�+1

v �B2��

+ ��ñ+1
c �B2���ñ�

v �A2��

= C1�ñ,�ñ��−1 + C2�ñ,�ñ��+1,
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��ñ
c�y���ñ�

v �y��inter-ribbon = ��ñ
c�A1���ñ�+1

v �B2��

+ ��ñ−1
c �B1���ñ�

v �A2��

+ ��ñ
c�A2���ñ�−1

v �B1��

+ ��ñ+1
c �B2���ñ�

v �A1��

= D1�ñ,�ñ��−1 + D2�ñ,�ñ��+1. �10�

Finally, the velocity matrix element ��ñ
c�kx ,y�� Ê·P�

me
��ñ�

v �kx ,y��
is equal to −2Ix sin�kxIx��		0C1+ �	4+	3�D1
�ñ,�ñ��−1+ 		0C2
+ �	4+	3�D2
�ñ,�ñ��+1�, which determines the selection rule
�ñ��− ñ= �1 and the effective transition channels.

In addition to the sharp Landau peaks, there are several
small bumps, P1, P2, and P3 in the absorption spectra, for
example. Their transition channels are also identified and
shown in Fig. 4�b�. The first peak P1 results form the transi-
tion between the highest occupied state �ñ�=0� and the low-
est unoccupied state �ñ=0�. The absorption frequency of P1
is equal to the size of band gap Eg. The projection
��c�B2� ��v�A2�� contributes to the velocity matrix element
and gives rise to this small bump. P2 peak originates in the
transition between the ñ�=−1 and ñ=0 levels. The projection
��c�B1� ��v�A1�� leads to this peak. The transition between
ñ�=0 and ñ=2 leads to the P3 peak.

The B-dependent absorption frequencies of Landau peaks
are helpful in understanding the characteristics of the mag-
netoabsorption spectra. The absorption frequencies of the
first five peaks of the bilayer ribbon, �0

+, �1
+, �2

−, �2
+, and �3

−,
are shown in Fig. 5. �’s make a blue shift as the field
strength increases. In the energy region ��0.04	0
�100 meV, all absorption frequencies of Landau peaks are

linear in B. The absorption frequency of the first Landau
peak �0

+ is linearly dependent on field strength even when the
testing B field is up to 25 T. The chief reason is that �0

+

results from the transition between the ñ�=0 occupied state
and the ñ=1 occupied state. The state energies of the initial
and final states both follow the Ec,vB relation at B
�25 T 	Fig. 2�c�
. This leads to the linear B-dependent �0

+.
On the other hand, �1

+, �2
−, �2

+, and �3
− exhibit a different

B-dependence behavior. They are linear functions of the field
strength at B�5 T while they show the ��B relation at
B�20 T. At B�5 T, the initial and final states of �1

+, �2
−,

�2
+, or �3

− observe the Ec,vB relation 	the inset of Fig. 2�c�
.
Such a linear-in-B dependence is missing when the field
strength increases. At B�20 T, both the initial and final
states of the optical excitation abide by the simple relation
Eñ

c�Eñ�
v ��B 	Fig. 2�d�
. As a result, �’s show linear-in-�B

dependence.
A comparison is made between literatures and the present

work, exploring the magnetoabsorption spectra of an unbi-
ased bilayer graphene ribbon. The optical property of biased
bilayer graphene in the presence of B is studied.18 A four-
band continuum model is employed to analytically study the
Landau-level energies and the related wave functions. The
effects caused by the interlayer interactions, the strength of
gated field, and the magnitude of magnetic field are taken
into consideration. The oscillator strength for electric dipole
transitions between the Landau states, namely the velocity
matrix element in this work, is then calculated. The selection
rule associated with the interband or intraband transition fol-
lows �ñ��− �ñ�= �1, which is the same as that of the present
work. In contrast to an unbiased system, Ref. 18 shows that
the interband transitions of a biased bilayer are significantly
shifted in energy due to the opening of an energy gap caused
by the gated field, and electric-field-modulated oscillator
strength exhibits B-field dependence. Such interesting prop-
erties result from the cooperation of interlayer interactions,
magnetic field, and gated field. In the absence of external
fields, the interlayer interactions change the two pairs of the
linear bands to four complicated bands. Each band consists
of parabolic bands and sublinear bands.10–13 The application
of B field induces the Landau levels �flatbands� and related
Landau wave functions. The gated field produces a potential
difference �U between the two graphene layers. It chiefly
shifts the Landau-level energies and modifies the character-
istic of wave functions. As a result, gated field changes the
transition energy of interband excitation and the correspond-
ing oscillator strength. Through the destruction of the degen-
eracy between two layers, the gated field can open a band
gap in the absence or presence of B. Such an effect is differ-
ent from that caused by the chemical difference 	6. In this
work, 	6 makes a contribution to the opening of a band gap
in the presence of B. Moreover 	6 destroys the degeneracy
between A and B atoms through the changes of the site en-
ergy of A atom. On the other hand, anomalous absorption
line in magnetoabsorption spectra of a monolayer graphene
with or without an excitonic gap is theoretically studied.38,39

The frequencies and intensities of absorption lines in quite
low energy region vary with the chemical potential, which
can be experimentally tunable by the application of gate bias

FIG. 5. Frequencies of the first five peaks in the absorption
spectra of bilayer ribbon, �0

+, �1
+, �2

−, �2
+, and �3

−, vs the field
strength.
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voltage to a field effect device. We are so inspired by the
interesting properties mentioned above18,24,38 to further study
the magnetoabsorption spectra of a bilayer graphene �rib-
bons�.

IV. CONCLUSIONS

The Peierls-coupling tight-binding method is employed to
study the low-energy magnetoabsorption spectra of the AB-
stacked bilayer graphene ribbons. Absorption spectra exhibit
several sharp Landau peaks, which are strongly affected by
the interlayer interactions and magnetic-field magnitude. Be-
cause of the inter-ribbon interactions, A��� of the bilayer
graphene ribbon contrasts with that of the monolayer ribbon
in the number, the frequencies, and the energy spacings of
the Landau peaks. Moreover, magnetoabsorption spectra ex-
hibit denser Landau peaks in a bilayer ribbon than in a
monolayer ribbon. The absorption frequencies of Landau
peaks of the bilayer ribbon do not follow the simple relation
��B. The findings show that the frequency of the first peak
is linearly proportional to field strength even though the field
strength up to B=25 T. Other peaks show the B-dependence
frequencies at B�5 T and the �B-dependence frequencies
at B�16 T. The interesting magnetoabsorption spectra re-

sult from the magnetoelectronic properties. As a result of the
interlayer interactions, the magnetic energy bands of a bi-
layer graphene ribbon are different from those of a mono-
layer ribbon in the Landau-level energies, the energy spac-
ing, the state degeneracy, and the number of the Landau
levels. The interlayer interactions also induce a band gap and
cause denser Landau levels. In the energy region �E�
�50 meV, the Landau-level energies follow the relation
�E� ñB. At �E��50 meV, even a simple relation between E
and ñ could not be figured out. The Landau plot shows that
Landau levels grow with B at a low field B�5 T, whereas
they are �B dependent at the field strength B�20 T. The
properties of Landau wave functions are also explored. They
contribute to understand the transition channels of the Lan-
dau peaks and the optical selection rule �ñ= �1. Most im-
portant of all, the predicted results could be verified by the
optical measurements, and the findings lead to an access to
the magnetoelectronic properties and the optical spectra of a
2D bilayer graphene.

ACKNOWLEDGMENTS

This work was supported by the Taiwan National Science
Council �Grants No. NSC 96-2112-M-165-001-MY3 and
NSC 95-2112-M-006-0002�.

*t00252@mail.tut.edu.tw
†mflin@mail.ncku.edu.tw

1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y.
Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Sci-
ence 306, 666 �2004�.

2 J. S. Bunch, Y. Yaish, M. Brink, K. Bolotin, and P. L. McEuen,
Nano Lett. 5, 287 �2005�.

3 Y. B. Zhang, J. P. Small, M. E. S. Amori, and P. Kim, Phys. Rev.
Lett. 94, 176803 �2005�.

4 Y. H. Wu, B. J. Yang, B. Y. Zong, H. Sun, Z. X. Shen, and Y. P.
Feng, J. Math. Chem. 14, 469 �2004�.

5 A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 �2007�.
6 D. V. Khveshchenko, Phys. Rev. Lett. 87, 246802 �2001�.
7 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.

Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature �London� 438, 197 �2005�.

8 Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature �Lon-
don� 438, 201 �2005�.

9 V. P. Gusynin and S. G. Sharapov, Phys. Rev. Lett. 95, 146801
�2005�.

10 S. Latil and L. Henrard, Phys. Rev. Lett. 97, 036803 �2006�.
11 M. Aoki and H. Amawashi, Solid State Commun. 142, 123

�2007�.
12 C. L. Lu, C. P. Chang, Y. C. Huang, J. H. Ho, C. C. Hwang, and

M. F. Lin, J. Phys. Soc. Jpn. 76, 024701 �2007�.
13 E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J.

M. B. Lopes dos Santos, J. Nilsson, F. Guinea, A. K. Geim, and
A. H. Castro Neto, Phys. Rev. Lett. 99, 216802 �2007�.

14 C. L. Lu, C. P. Chang, Y. C. Huang, R. B. Chen, and M. L. Lin,
Phys. Rev. B 73, 144427 �2006�.

15 T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg,
Science 313, 951 �2006�.

16 E. McCann and V. I. Fal’ko, Phys. Rev. Lett. 96, 086805 �2006�.
17 D. S. L. Abergel and V. I. Fal’ko, Phys. Rev. B 75, 155430

�2007�.
18 J. M. Pereira, F. M. Peeters, and P. Vasilopoulos, Phys. Rev. B

76, 115419 �2007�.
19 P. Fekete and G. Gumbs, J. Phys.: Condens. Matter 11, 5475

�1999�.
20 T. B. Boykin and P. Vogl, Phys. Rev. B 65, 035202 �2001�.
21 C. P. Chang, C. L. Lu, Y. K. Fang, R. B. Chen, F. L. Shyu, and

M. F. Lin, Carbon 42, 2975 �2004�.
22 C. P. Chang, C. L. Lu, F. L. Shyu, R. B. Chen, Y. C. Huang, and

M. F. Lin, Carbon 43, 1424 �2005�.
23 N. Nemec and G. Cuniberti, Phys. Rev. B 74, 165411 �2006�.
24 N. Nemec and G. Cuniberti, Phys. Rev. B 75, 201404�R� �2007�.
25 Y. H. Lai, J. H. Ho, C. P. Chang, and M. F. Lin, Phys. Rev. B 77,

085426 �2008�.
26 Y. C. Huang, C. P. Chang, and M. F. Lin, J. Appl. Phys. 103,

073709 �2008�.
27 Y. C. Huang, C. P. Chang, and M. F. Lin, Nanotechnology 18,

495401 �2007�.
28 L. Brey and H. A. Fertig, Phys. Rev. B 73, 235411 �2006�; 73,

195408 �2006�.
29 J. C. Charlier, X. Gonze, and J. P. Michenaud, Phys. Rev. B 43,

4579 �1991�.
30 C. T. White, J. W. Li, D. Gunlycke, and J. W. Mintmire, Nano

Lett. 7, 825 �2007�.
31 Y. Miyamoto, K. Nakada, and M. Fujita, Phys. Rev. B 59, 9858

�1999�.

HUANG, CHANG, AND LIN PHYSICAL REVIEW B 78, 115422 �2008�

115422-8



32 A. H. MacDonald, Phys. Rev. B 29, 6563 �1984�.
33 Y. Hatsugai, Phys. Rev. B 48, 11851 �1993�.
34 E. A. Henriksen, Z. Jiang, L.-C. Tung, M. E. Schwartz, M. Ta-

kita, Y.-J. Wang, P. Kim, and H. L. Stormer, Phys. Rev. Lett.
100, 087403 �2008�.

35 C. P. Chang, Y. C. Huang, C. L. Lu, J. H. Ho, T. S. Li, and M. F.
Lin, Carbon 44, 508 �2006�.

36 J. G. Johnson and G. Dresselhaus, Phys. Rev. B 7, 2275 �1973�.
37 M. F. Lin and Kenneth W.-K. Shung, Phys. Rev. B 50, 17744

�1994�.
38 V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Phys. Rev.

Lett. 98, 157402 �2007�.
39 V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, J. Phys.: Con-

dens. Matter 19, 026222 �2007�.

MAGNETOABSORPTION SPECTRA OF BILAYER GRAPHENE… PHYSICAL REVIEW B 78, 115422 �2008�

115422-9


